DeepMind讓AI首次在量子水平描述物質!Nature:化學領域最有價值技術之一

明敏 發自 凹非寺
量子位 報道 | 公眾號 QbitAI

現在,AI能在量子層面精準描述物質了!

在最新一期《科學》雜誌上,DeepMind構建的神經網路可以預測分子內電子分佈,從而計算出分子特性。

這距離DeepMind登上《Nature》封面、解決兩大數學難題,僅僅過去了一個星期。

而這一突破對於AI、化學、材料學領域都有重要影響。

一方面,這意味著深度學習在準確模擬量子層面物質上大有前景;另一方面,這對於在奈米尺度探索材料、醫學、催化劑等物質都具有重要影響。

DeepMind還表示,他們將開源這一成果給全球科研人員用!

怪不得網友會發出感嘆:

DeepMind——YYDS!

《Nature》稱這將是化學領域中最有價值的技術之一:

用MLP解決電子相互作用問題

這一次DeepMind解決的問題是密度泛函理論(DFT)有關。

DFT是一種通過計算分子內電子密度來研究多電子體系電子結構的方法,它可以在量子水平上描述物質,通過近似的方法,DFT先把複雜的電子相互作用問題簡化為無作用問題,再將所有誤差另放在一項中,對誤差單獨分析。

在過去幾十年中,它已經成為預測化學、生物學和材料中各種系統特性時最常用的方法之一。

但目前這一方法仍舊存在一定侷限性。

但目前這一方法仍舊存在一定侷限性

一方面,它存在離域化誤差

在DFT計算中,泛函會找到能量最小化時的電子構型來推斷分子的電子密度。由此函數誤差就會帶來電子誤差。

大多數已有密度泛函都會錯誤地將電子密度分佈在幾個原子或分子上,而不是將其確定在單個分子或原子周圍。

左圖為傳統方法,右圖為DeepMind提出方法

另一個主要誤差來自於自旋對稱性破壞

如果描述結構中的化學鍵斷裂時,現有的泛函會給出一種自旋對稱性被破壞的構型。

但是對稱性對於研究物理、化學構型有著重要作用,所以當前方法的這一缺陷也就造成了很大的誤差。

在對比中可以看出,PBE方法打破了自旋對稱性。

由此,DeepMind提出了一種神經網路——DeepMind 2021(簡稱DM21)。

這一框架使用了多層感知器(MLP),它能對映一組輸入向量到一組輸出向量。

在向一個權值共享的MLP中輸入自旋指數電荷密度等精密化學資料後,它可以預測局部電荷密度的增強值和局部能量密度。

將這些數值整合後,再向函數中增加色散校正DFT。

經過訓練後,就可以在自洽計算中部署這一模型。

在具體資料對比中,DM21的誤差值都低於傳統方法。

也就是說,DM21可以精準地模擬複雜系統,如氫鍵鏈(hydrogen chains)、帶電荷DNA鹼基對和雙自由基體系的過渡態。

實驗結果顯示,在不同基準(GMTKN55\BBB\QM9)上,DM21的絕對誤差值均小於普通方法。

由此不難得出,DM21可以構建出比DFT方法更為精確地描述電子相互作用,深度學習在量子層面精準模擬物質也將大有前景。

已用AI震驚生物界、數學界

本次研究成果的一作為谷歌DeepMind研究學者James Kirkpatrick

他表示,了解微觀現象對於清潔電力、微塑膠汙染等方面研究都有重要意義。

這對研究人員在奈米水平上探索新材料、藥物開發和催化劑等問題,也都有深刻影響。

而這已經不是DeepMind第一次用AI震驚科學界。

在今年,他們用AlphaFold2預測了人類98.5%的蛋白質,一時間震驚生物學界。

不久前,他們用AI突破兩大數學難題還登上《Nature》封面,對紐結理論、表示論都產生深刻影響。

論文地址:
https://www.science.org/doi/10.1126/science.abj6511

參考連結:

[1]https://deepmind.com/blog/article/Simulating-matter-on-the-quantum-scale-with-AI
[2]https://twitter.com/DeepMind/status/1469275897614196739

2021人工智慧年度評選結果揭曉

伴隨著產業數字化、智慧化的浪潮,AI技術越來越像生活中的水電煤,以潤物細無聲的形態深入到大眾生活的每一個角落。而背後重要的一股推助力,就來自於越來越成熟的平臺化解決方案。

「2021年度人工智慧最佳解決方案TOP10」榜單中,各個垂直領域的科技頭部企業們,正在基於自身的平臺實力,支持技術下沉,推助傳統行業數智化升級,打造出了一條前沿技術能夠被最廣泛應用的通途:

p.s.點選圖片/連結查看完整榜單:2021人工智慧年度評選結果揭曉!AI落地最佳參考在此奉上

點這裡

👇

關注我,記得標星哦~

一鍵三連「分享」、「點贊」和「在看」

科技前沿進展日日相見~

相關文章

Nature Energy:超快鎂金屬電池

Nature Energy:超快鎂金屬電池

鎂電池自2000年問世以來一直被認為有極大的潛力超越鋰離子電池,其原因主要是低價,高體積容量,並且無枝晶生長行為的鎂金屬可以直接用作電池負極...

臉部辨識遭到美國波士頓政府禁用

臉部辨識遭到美國波士頓政府禁用

郭一璞 發自 凹非寺量子位 報道 | 公眾號 QbitAI 舊金山之後,美國又有一座大城市禁用臉部辨識了。這次,是哈佛、MIT等知名高校的所...